CFAspace

Provided by APF

Academy of Professional Finance 专业金融学院

CFA Level II

Quantitative Methods
Introduction

CFA Lecturer: Jiahao Gu

Weight of Quantitative Methods

Topic Area	Level I	Level II	Level III
Ethical and Professional Standards	15	10-15	10-15
Quantitative Methods	12	5-10	0
Economics for Valuation	10	5-10	5-15
Financial Reporting and Analysis	20	15-20	0
Corporate Finance	7	5-15	0
Equity Investments	10	15-25	5-15
Fixed Income	10	10-20	10-20
Derivatives	5	5-15	5-15
Alternative Investments	4	5-10	5-15
Portfolio Management and Wealth Planning	7	5-10	40-55
Total	100	100	100

Data Source: CFAInstitute.org

Readings	LOS
CORRELATION AND REGRESSION	11
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS	15
TIME-SERIES ANALYSIS	15
Excerpt from "Probabilistic Approaches: Scenario Analysis, Decision Trees, and Simulations"	7

		1. Sample covariance, sample correlation coefficient and interpret scatter ple				
		2. Describe limitations to correlation analysis				
		3. Formulate a test of the hypothesis and determine whether the hypothesis rejected at a given level of significance	sis is			
		4. Distinguish between the dependent and independent variables				
	CORRELATION	5. Describe the assumptions underlying linear regression, and interpret regression coefficients				
	AND	6. The standard error of estimate, the coefficient of determination, and a confidence interval for a regression coefficient				
AND		7. Formulate a null and alternative hypothesis about a population value of regression coefficient, and determine the appropriate test statistic and wh the null hypothesis is rejected at a given level of significance				
REGRESSION	KEGKESSION	8. Calculate the predicted value for the dependent variable, given an estimegression model and a value for the independent variable	nated			
		9. Calculate and interpret a confidence interval for the predicted value of t dependent variable	:he			
		10. Describe the use of analysis of variance (ANOVA) in regression analysi interpret ANOVA results, and calculate and interpret the F-statistic	s,			

11. Describe limitations of regression analysis

	pendent variable and several independent variables, and determine the atistical significance of each independent variable	
	2. interpret estimated regression coefficients and their p-values	
MULTIPLE	3. formulate a null and an alternative hypothesis about the population value of a regression coefficient, calculate the value of the test statistic, and determine whether to reject the null hypothesis at a given level of significance	
REGRESSION	4. interpret the results of hypothesis tests of regression coefficients	
AND ISSUES IN	5. calculate and interpret 1) a confidence interval for the population value of a regression coefficient and 2) a predicted value for the dependent variable,	
REGRESSION	given an estimated regression model and values for the independent variables	
ANALYSIS	6. explain the assumptions of a multiple regression model	
	7. calculate and interpret the F-statistic, and describe how it is used in regression analysis	
	8. distinguish between and interpret the R^2 and adjusted R^2 in multiple regression	

formulate a multiple regression equation to describe the relation between a

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

- 9. evaluate how well a regression model explains the dependent variable by analyzing the output of the regression equation and an ANOVA table
- 10. formulate a multiple regression equation by using dummy variables to represent qualitative factors, and interpret the coefficients and regression results
- 11. explain the types of heteroskedasticity and how heteroskedasticity and serial correlation affect statistical inference
- 12. describe multicollinearity, and explain its causes and effects in regression analysis
- 13. describe how model misspecification affects the results of a regression analysis, and describe how to avoid common forms of misspecification
- 14. describe models with qualitative dependent variables
- 15. evaluate and interpret a multiple regression model and its results

- 1. calculate and evaluate the predicted trend value for a time series, modeled as either a linear trend or a log-linear trend, given the estimated trend coefficients
- 2. describe factors that determine whether a linear or a log-linear trend should be used with a particular time series, and evaluate limitations of trend models
- 3. explain the requirement for a time series to be covariance stationary, and describe the significance of a series that is not stationary

TIME-SERIES ANALYSIS

- 4. describe the structure of an autoregressive (AR) model of order p, and calculate one- and two-period-ahead forecasts given the estimated coefficients
- 5. explain how autocorrelations of the residuals can be used to test whether the autoregressive model fits the time series
- 6. explain mean reversion, and calculate a mean-reverting level
- 7. contrast in-sample and out-of-sample forecasts, and compare the forecasting accuracy of different time-series models based on the root mean squared error criterion
- 8. explain the instability of coefficients of time-series models
- 9. describe characteristics of random walk processes, and contrast them to covariance stationary processes

- 10. describe implications of unit roots for time-series analysis, explain when unit roots are likely to occur and how to test for them, and demonstrate how a time series with a unit root can be transformed so it can be analyzed with an AR model
- 11. describe the steps of the unit root test for nonstationarity, and explain the relation of the test to autoregressive time-series models

TIME-SERIES ANALYSIS

- 12. explain how to test and correct for seasonality in a time-series model, and calculate and interpret a forecasted value using an AR model with a seasonal lag
- 13. explain autoregressive conditional heteroskedasticity (ARCH), and describe how ARCH models can be applied to predict the variance of a time series
- 14. explain how time-series variables should be analyzed for nonstationarity and/or cointegration before use in a linear regression
- 15. determine an appropriate time-series model to analyze a given investment problem, and justify that choice

Excerpt from
"Probabilistic
Approaches:
Scenario Analysis,
Decision Trees,
and Simulations"

- 1. Describe steps in running a simulation
- 2. Explain three ways to define the probability distributions for a simulation's variables
- 3. Describe how to treat correlation across variables in a simulation
- 4. Describe advantages of using simulations in decision making
- 5. Describe some common constraints introduce into simulations
- 6. Describe issues in using simulations in risk assessment
- 7. Compare scenario analysis, decision trees, and simulations

CFAspace

