CFAspace

Provided by APF
Academy of Professional Finance 专业金融学院

Content

Interest Rate
（Los a，b）

Required rate of return
Discount rate
Opportunity cost
Real risk free rate plus premium

Effective Annual Rate
（Los c，d）

Stated annual interest rate
Frequency of compounding
Continuous compounding
Ordinary annuity
Annuity due
Perpetuity（PV only）
A series of unequal cash flows
Compounding Period other than annual

Time Value of Money

Interest Rate（Los a，b）

Interest rate， i ，is the measure of the time value of money（TVM）

Interest
Rate

Discount rate

Opportunity cost

Cost of capital\end{array}\right.\)
$\mathrm{i}=$ real risk－free rate＋inflation premium＋different types of risk premium

nominal risk－free rate

Default risk

Liquidity risk（lower，higher）

Maturity risk（longer，higher）

Time Value of Money

Effective Annual Rate（Los c）

Financial institutions usually quote rates as stated annual interest rates，along with a compounding frequency．

To get the actual interest earned by the investors，we use EAR．
$E A R=(1+\text { periodic rate })^{m}-1$
m －the number of compounding periods per year
periodic rate－stated annual rate／m
If the stated annual rate is 10% ，what is the EAR for semiannual， quarterly，monthly，and daily compounding？
EAR of semiannual compounding $=(1+10 \% / 2)^{2}-1=10.25 \%$
EAR of quarterly compounding $=(1+10 \% / 4)^{4}-1=10.38 \%$
EAR of monthly compounding $=(1+10 \% / 12)^{12}-1=10.47 \%$
EAR of daily compounding $=(1+10 \% / 365)^{365}-1=10.515 \%$
EAR of continuous compounding $=e^{r}-1=e^{10 \%}-1=10.517 \%$

Time Value of Money

Effective Annual Rate（Los d）

If the compounding periods are not annual，what should we do？
Mike invests $\$ 10,000$ in an account that can earn 3% per year with monthly compounding．How much will he get after two years？
$\operatorname{EAR}=(1+3 \% / 12)^{12}-1=3.04 \%, 10,000 \times(1+3.04 \%)^{2}=10,617.57$
There are 24 months and the periodic rate is $3 \% / 12=0.25 \%$ ，so $10,000 \times(1+3 \% / 12)^{24}=10,617.57$

Peter wants to get $\$ 10,000$ in five years．The return on his account is 5% per year with quarterly compounding．How much should he deposit today in order to meet his goal？
$\operatorname{EAR}=(1+5 \% / 4)^{4}-1=5.095 \%, 10,000 /(1+5.095 \%)^{5}=7,800$
There are 20 quarters and the periodic rate is $5 \% / 4=1.25 \%$ ，so $10,000 /(1+5 \% / 4)^{20}=7,800$

Time Value of Money

How to use the calculator

Time Value of Money

Calculate FV and PV（Los e）

1． FV of single sum $\quad \mathrm{FV}=\mathrm{PV}(1+\mathrm{I} / \mathrm{Y})^{\mathrm{N}}$
Calculate the FV of a $\$ 500$ investment at the end of five years if the annually compounded rate of return is 6% ．
$\mathrm{N}=5 ; \mathrm{I} / \mathrm{Y}=6 ; \mathrm{PV}=-500 ; \mathrm{PMT}=0 ; \mathrm{CPT} \mathrm{FV}=669.11$
2．$P V$ of single sum $\quad P V=F V /(1+I / Y)^{N}$
Calculate the PV of a $\$ 2,000$ cash flow that will be received in 6 years， given the discount rate of 8% ．
$\mathrm{N}=6$ ； $\mathrm{I} / \mathrm{Y}=8 ; \mathrm{FV}=2,000 ;$ PMT $=0$ ；CPT PV $=-1,260.34$
The negative sign means the opposite cash flow direction of FV and PV．
3．Annuity
Annuity is a stream of equal cash flows that occurs at equal intervals over a given period．
Two types of annuity：Ordinary Annuity／Annuity due

Time Value of Money

Calculate FV and PV（Los e）

a）FV of ordinary annuity
Calculate the FV of an ordinary annuity that pays $\$ 500$ per year for six years，assuming the expected return is 9% each year．
$N=6 ; I / Y=9 ; P V=0 ; P M T=-500 ; C P T F V=3,761.66$

b）PV of ordinary annuity
Calculate the PV of an annuity that pays \＄2，000 per year for 10 years， given the discount rate of 8% ．
$N=10 ; I / Y=8 ; F V=0 ; P M T=-2,000 ; C P T P V=13,420.16$

Time Value of Money

Calculate FV and PV（Los e）

c）PV of ordinary annuity beginning later than $t=1$
Calculate the PV of an annuity that pays $\$ 2,000$ per year for 7 years and the first payment is to be received four years from today，given the discount rate of 8% ．

Step 1
$N=7 ; \mathrm{I} / \mathrm{Y}=8 ; \mathrm{FV}=0 ; \mathrm{PMT}=-2,000 ; \mathrm{CPT} \mathrm{PV}_{3}=10,412.74$
Step 2
$N=3 ; I / Y=8 ; F V=-P V_{3}=-10,412.74 ; P M T=0 ; C P T P V_{0}=8,265.97$

Time Value of Money

Calculate FV and PV（Los e）

4．PV of a bond cash flow
Calculate the PV of a bond that pays $\$ 40$ of interest each year and its par value of $\$ 1,000$ at maturity in 10 years，given the discount rate of 8\％．

$\mathrm{N}=10 ; \mathrm{I} / \mathrm{Y}=8 ; \mathrm{FV}=1,000 ;$ PMT＝40；CPT PV＝－731．59
5．FV of an annuity due
Calculate the FV of an annuity due that pays $\$ 500$ at the beginning of each year for six years，given the expected return is 9\％each year．

```
\(N=6 ; I / Y=9 ; P V=0 ; P M T=-500 ; C P T F V_{5}=3,761.66 ;\)
\[
F V_{6}=F V_{5} \times(1+9 \%)=4,100
\]
```


Time Value of Money

Calculate FV and PV（Los e）

6．PV of an annuity due
Calculate the PV of an annuity that pays \＄2，000 per year for 10 years， given the discount rate of 8% ．

$N=10 ; \mathrm{I} / \mathrm{Y}=8 ; \mathrm{FV}=0 ; \mathrm{PMT}=-2,000 ; \mathrm{CPT}_{\mathrm{NV}}^{-1}=13,420.16$
$P V_{0}=P V_{-1} \times(1+8 \%)=14,493.77$
7．PV of a perpetuity
$P V_{\text {perpetuity }}=P M T /(I / Y)$
Calculate the PV of a perpetuity that pays $\$ 2,000$ per year forever，given the discount rate of 8% ．
$P V_{\text {perpetuity }}=2,000 / 8 \%=25,000$

Time Value of Money

Calculate FV and PV（Los e）

8．FV and PV of Uneven Cash Flow Series

$F V_{1}=1,500 \times(1+8 \%)^{5}=2,204$
$\mathrm{FV}_{2}=-1,100 \times(1+8 \%)^{4}=-1,496.54$
$F V_{3}=-800 \times(1+8 \%)^{3}=-1,007.77$
$F V_{4}=1,200 \times(1+8 \%)^{2}=1,399.68$
$F V_{5}=500 \times(1+8 \%)^{1}=540$
$F V_{6}=1,000 \times(1+8 \%)^{0}=1,000$
$F V=2,204+(-1,496.54)+(-1007.77)+1,399.68+540+1,000=2,639.37$

Time Value of Money

Calculate FV and PV（Los f）

9．Compounding Period other than annual
Calculate the FV of paying $\$ 1000$ quarterly for three years，given the interest rate of 8% ．

$$
N=3 \times 4=12 ; \mathrm{I} / \mathrm{Y}=8 / 4=2 ; \mathrm{PMT}=-1000 ; \mathrm{CPT} F V=14,339.93
$$

10．Loan Payment
Calculate the amount of payment that a company must make quarterly to fully amortize its five－year loan of $\$ 60,000$ at a rate of 12% ．
$N=5 \times 4=20 ; I / Y=12 / 4=3 ; P V=-60,000 ; F V=0 ;$
CPT PMT $=4,032.94$

CFAspace

