CFAspace

Provided by APF

Academy of Professional Finance 专业金融学院

CFA Level I

The Time Value of Money

Part I

CFA Lecturer: Jiahao Gu

Content		
Interest Rate (Los a, b)	Required rate of return Discount rate Opportunity cost Real risk free rate plus premium	
Effective Annual Rate (Los c, d)	Stated annual interest rate Frequency of compounding Continuous compounding	
Future Value and Present Value (Los e, f)	Ordinary annuity Annuity due Perpetuity (PV only) A series of unequal cash flows Compounding Period other than annual	

Interest Rate (Los a, b)

Effective Annual Rate (Los c)

```
Financial institutions usually quote rates as stated annual interest
rates, along with a compounding frequency.
To get the actual interest earned by the investors, we use EAR.
EAR = (1 + \text{periodic rate})^m - 1
m – the number of compounding periods per year
periodic rate – stated annual rate / m
If the stated annual rate is 10%, what is the EAR for semiannual,
quarterly, monthly, and daily compounding?
EAR of semiannual compounding = (1 + 10\% / 2)^2 - 1 = 10.25\%
EAR of quarterly compounding = (1 + 10\% / 4)^4 - 1 = 10.38\%
EAR of monthly compounding = (1 + 10\% / 12)^{12} - 1 = 10.47\%
EAR of daily compounding = (1 + 10\% / 365)^{365} - 1 = 10.515\%
EAR of continuous compounding = e^r - 1 = e^{10\%} - 1 = 10.517\%
```

Effective Annual Rate (Los d)

If the compounding periods are not annual, what should we do? Mike invests \$10,000 in an account that can earn 3% per year with monthly compounding. How much will he get after two years?

EAR = $(1 + 3\% / 12)^{12} - 1 = 3.04\%$, 10,000 x $(1 + 3.04\%)^2 = 10,617.57$

There are 24 months and the periodic rate is 3% / 12 = 0.25%, so $10,000 \times (1 + 3\% / 12)^{24} = 10,617.57$

Peter wants to get \$10,000 in five years. The return on his account is 5% per year with quarterly compounding. How much should he deposit today in order to meet his goal?

EAR = $(1 + 5\% / 4)^4 - 1 = 5.095\%$, 10,000 / $(1 + 5.095\%)^5 = 7,800$ There are 20 quarters and the periodic rate is 5% / 4 = 1.25%, so 10,000 / $(1 + 5\% / 4)^{20} = 7,800$

Academy of Professional Finance 专业金融学院

How to use the calculator

Set P/Y = 1**BAII**Plus [2nd][P/Y] "1" [ENTER][2nd][QUIT] Switch between BGN and END mode [2nd][BGN][2nd] [SET][2nd][QUIT] 🐌 Texas Instruments N: Number of compounding periods DEL ONIOFF CPT ENTER I/Y: Interest rate per compounding period CF NPV 2ND IRR -PV: Present Value AMORT BGN CLR TVM Ν [I/Y] PV) [РМТ] FV) FV: Future Value ÷ % \sqrt{x} χ^2 PMT: Constant periodic cash flow SIN () yх × INV **CPT:** Compute DATA BOND 8 LN 7 9 BRKEVN ROUND 5 + STO 4 6 DATE RCL 2 3 1 CLR WORK MEM FORMAT RESET = ΡV CEC 0 +1t = 03 2 5 ADVANCED BUSINESS ANALYST PMT PMT PMT PMT PMT FV

Academy of Professional Finance 专业金融学院

Calculate FV and PV (Los e)

1. FV of single sum $FV = PV(1 + I/Y)^N$ Calculate the FV of a \$500 investment at the end of five years if the annually compounded rate of return is 6%.

N = 5; I/Y = 6; PV = -500; PMT = 0; CPT FV = 669.11

2. PV of single sum $PV = FV / (1 + I/Y)^N$

Calculate the PV of a \$2,000 cash flow that will be received in 6 years, given the discount rate of 8%.

N = 6; I/Y = 8; FV = 2,000; PMT = 0; CPT PV = -1,260.34

The negative sign means the opposite cash flow direction of FV and PV.

3. Annuity

Annuity is a stream of equal cash flows that occurs at equal intervals over a given period.

Two types of annuity: Ordinary Annuity / Annuity due

Calculate FV and PV (Los e)

c) PV of ordinary annuity beginning later than t = 1Calculate the PV of an annuity that pays \$2,000 per year for 7 years and the first payment is to be received four years from today, given the discount rate of 8%. PV₀ PV_3 Step 1 N = 7; I/Y = 8; FV = 0; PMT = -2,000; CPT PV₃ = 10,412.74 Step 2 N = 3; I/Y = 8; FV = -PV₃ = -10,412.74; PMT = 0; CPT PV₀ = 8,265.97

Academy of Professional Finance 专业金融学院

Calculate FV and PV (Los f)

9. Compounding Period other than annual Calculate the FV of paying \$1000 quarterly for three years, given the interest rate of 8%. N = 3 x 4 = 12; I/Y = 8 / 4 = 2; PMT = -1000; CPT FV = 14,339.93 Year 1 Year 2 Year 3 10. Loan Payment Calculate the amount of payment that a company must make guarterly to fully amortize its five-year loan of \$60,000 at a rate of 12%. N = 5 x 4 = 20; I/Y = 12 / 4 = 3; PV = -60,000; FV = 0; CPT PMT = 4,032.94

Thank You!